Reference
Manual

-
a
- ;

- Time-Sharing

BASIC
Language

GENERAL @ ELECTRIC

TIME-SHARING
BASIC LANGUAGE

REFERENCE MANUAL

June 1965
Revised 1-67
Reprinted 5-67 & 1-68

GENERAL @ ELECTRIC

INFORMATION SERVICE DEPARTMENT
202026A

PREFACE

This manual is a reference for the BASIC language used with the General Electric Computer
Time-Sharing Service.

The development of the BASIC language and the original version of this manual were supported by
the National Science Foundation under the terms of a grant to Dartmouth College. Under this
grant, Dartmouth College, under the direction of Professors John G. Kemeny and Thomas E. Kurtz,
developed the BASIC language compiler and the necessary executive routines for the GE-235 and
the DATANET-30*.

The printing of this manual by General Electric does not necessarily constitute endorsement of
General Electric products by Dartmouth College.

This edition does not obsolete the previous edition dated May 1966. It does, however, contain
several minor revisions which are indicated by a bar in the margin opposite the change.

Copyright 1965 by the Trustees of Dartmouth College. Reproduced with the permission of
the Trustees of Dartmouth College.

* DATANET is a Reg. Trademark of the General Electric Company.

BASIC

TIME-SHARING SERVICE LANGUAGE

- ii -

I CONTENTS
Page
' 1. WHAT IS A PROGRAM . .. oo\ttt et e e e e e e 1
2. A BASIC PRIMER
2.1 An EXample | e e e e e e e 2
2,2 Formulas e e e e 6
2.2.1 NUIDETS |, ettt e et e e e e 7
2.2.2 Variables | e e e e e e e 8
b0 T 0o o o 1 8
2.4 Lists and Tables | | ittt e e e 10
2.5 Use of the Time-Sharing System | | ittt tennnnnn 12
2.6 Errors and "Debugging' L L. ... e e e e 14
2.7 Summary of Elementary Basic Statements 0., 18
2. 7.1 LET e, 19
2.7.2 READ and DAT A i it i ittt ettt ot o s s et et n s a e s o 19
/2 B T 0 =1 . e 19
b2 B S €1 T 0 T 20
2. T B IF—THEN . . .ttt it i it ettt it e e e e 20
- P 2.7.6 FOR and NEX T i e e e et ettt e e et et sa e 21
' D2 AR) 1. 21
2. . 8 END . e e e e e e e e e e e e e e e e e e e s 22
3. ADVANCED BASIC
3.1 More About Print | | . . L e e e e e e 23
3.2 FUNCHIONS | | . ittt sttt ettt e e e e e 25
3.3 GOSUB and RETURN | | | ittt ittt erenens 28
T 0 29
3.5 Some Miscellaneous Statements | 0 e e e e e e e e e e e e e 30
3.8 MatriCes . L e et e e e e 31
)
APPENDIXES
1‘ A. ERROR MESSAGES e e e e e et e e st e sttt s 35
B, LIMITATIONS ON BASIC . ..t i i i i e i et e et o e st s s o st oo nesssaaeness 38
C. USING THE TIME-SHARING SYSTEM it ittt ettt n et a st sonson 39
i BASIC
i -
| TIME-SHARING SERVICE __hasie

- iii -

e

1. WHAT IS A PROGRAM?

A program is a set of directions, or a recipe, that is used to tell a computer how to provide an
answer to some problem. It usually starts with the given data as the ingredients, contains a set
of instructions to be performed or carried out in a certain order, and ends up with a set of
answers as the cake, And, as with ordinary cakes, if you make a mistake in your program, you
will end up with something else--perhaps hash !

Any program must fulfill two requirements before it can be carried out. The first is that it must
be presented in a language that is understood by the “computer.” If the program is a set of
instructions for solving a system of linear equations and the “computer” is an English-speaking
person, the program will be presented in some combination of mathematical notation and English.
If the “computer” is a French-speaking person, the program must be in his language; and if the
“computer” is a high-speed digital computer, the program must be presented in a language which
the computer “understands.”

The second requirement for all programs is that they must be completely and precisely stated.
This requirement is crucial when dealing with a digital computer which has no ability to infer
what you mean--it does what you tell it to do, not what you meant to tell it,

We are, of course, talking about programs which provide numerical answers to numerical
problems, It is easy for a programmer to present a program in the English language, but such
a program poses great difficulties for the computer because English is rich with ambiguities and
redundancies, those qualities which make poetry possible, but computing impossible. Instead,
you present your program in a language which resembles ordinary mathematical notation, which
has a simple vocabulary and grammar, and which permits a complete and precise specification of
your program. The language you will use is BASIC (Beginner’s All-purpose Symbolic Instruction
Code) which is, at the same time, precise, simple, and easy to understand.

A first introduction to writing a BASIC program is given in Chapter 2. This chapter includes all
that you will need to know to write a wide variety of useful and interesting programs. Chapter
3 deals with more advanced computer techniques, and the Appendices contain a variety of
reference materials.

TIME-SHARING SERVICE BASIC

LANGUAGE

_1-

2. A BASIC PRIMER

2.1 AN EXAMPLE

The following example is a complete BASIC program for solving a system of two simultaneous
linear equations in two variables:

ax + by =c¢
dx + ey =1

and then solving two different systems, each differing from this system only in the constants ¢
and f.

You should be able to solve this system, if ae - bd is not equal.to 0, to find that

ce - bf af - cd
X =ae - bd and y=3ae - bd.

If ae - bd =0, there is either no solution or there are infinitely many, but there is no unique
solution. I you are rusty on solving such systems, take our word for it that this is correct. For
now, we want you to understand the BASIC program for solving this system.

Study this example carefully--in most cases the purpose of each line in the program is self-
evident--and then read the commentary and explanation.

10 READA, B, D, E
15 LETG=A*E-B*D

20 IF G =0 THEN 65

30 READC, F

37 LET X =(C*E - B*F)/ G

42 LETY =(A*F -C*D)/ G

55 PRINT X, Y

60 GO TO 30

65 PRINT “NO UNIQUE SOLUTION”
70 DATA 1, 2, 4

80 DATA 2, -7, 5

85 DATA 1, 3, 4, -7

90 END

We immediately observe severalthings about this sample program. First, we see that the program
uses only capital letters, since the teletypewriter has only capital letters.

BASIC

TIME-SHARING SERVICE LANGUAGE

A second observation is that each line of the program begins with a number. These numbers are
called line numbers and serve to identify the lines, each of which is called a statement. Thus, a
program is made up of statements, most of which are instructions to the computer. Line numbers
also serve to specify the order in which the statements are to be performed by the computer.
This means that you may type your program in any order. Before the program is run, the
computer sorts out and edits the program, putting the statements into the order specified by their
line numbers. (This editing process facilitates the correcting and changing of programs, as we
shall explain later.)

A third observation is that each statement starts, after its line number, with an English word.
This word denotes the type of the statement. There are several types of statements in BASIC,
nine of which are discussed in this chapter. Seven of these nine appear in the sample program
of this section,

A fourth observation, not at all obvious from the program, is that spaces have no significance in
BASIC, except in messages which are to be printed out, as in line number 65 on preceding page.
Thus, spaces may be used, or not used, at will to “pretty up” a program and make it more
readable. Statement 10 could have been typed as 10READA,B,D,E and statement 15 as
15LETG=A*E-B*D.

With this preface, let us go through the example, step by step. The first statement, 10, is a
READ statement. It must be accompanied by one or more DATA statements. When the computer
encounters a READ statement while executing your program, it will cause the variables listed
after the READtobe given values accordingto the next available numbers in the DATA statements.
In the example, we read A in statement 10 and assign the value 1 to it from statement 70 and,
similarly with B and 2, and with D and 4, At this point, we have exhausted the available data in
statement 70, but there is more in statement 80, and we pick up from it the number 2 to be
assigned to E.

We next go to statement 15, which is a LET statement, and first encounter a formula to be
evaluated. (The asterisk “*” is obviously used to denote multiplication.) In this statement we
direct the computer to compute the value of AE- BD, and to call the result G. In general, a LET
statement directs the computer to set a variable equal to the formula on the right side of the
equals sign., We know that if G is equal to zero, the system has no unique solution. Therefore,
we next ask, in line 20, if G is equal to zero. If the computer discovers a “yes” answer to the
question, it is directed to go to line 65, where it prints “NO UNIQUE SOLUTION”. From this
point, it would go to the next statement. But lines 70, 80, and 85 give it no instructions, since
DATA statements are not “executed”, and it then goes to line 90 which tells it to “END” the
program.

If the answer to the question “Is G equal to zero?” is “no”, as it is in this example, the computer
goes on to the next statement, in this case 30. (Thus, an IF-THEN tells the computer where to
go if the “IF” condition is met, but to go on to the next statement if it is not met.} The computer
is now directed to read the next two entries from the DATA statements, -7 and 5, (both are in
statement 80) and to assign them to C and F respectively. The computer is now ready to solve
the system

X+ 2y = -7 4x+2y = 5

TIME-SHARING SERVICE BASIC

LANGUAGE

In statements 37 and 42, we direct the computer to compute the value of X and Y according to the
formulas provided. Note that we must use parentheses to indicate that CE - BF is divided by G;
without parentheses, only BF would be divided by G and the computer would let y _ ~p BF

G

The computer is told to print the two values computed, that of X and that of Y, in line 55. Having
done this, it moves on to line 60 where it is directed back to line 30. If there are additional
numbers in the DATA statements, as there are here in 85, the computer is told in line 30 to take
the next one and assign it to C, and the one after that to F. Thus, the computer is now ready to
solve the system

As before, it finds the solution in 37 and 42 and prints them out in 55, and then is directed in 60
to go back to 30.

In line 30 the computer reads twomore values, 4 and -7, which it finds in line 85, It then proceeds
to solve the system

4
-7

X+ 2y
4x + 2y

and to print out the solutions. It is directed back again to 30, but there are no more pairs of
numbers available for C and F in the DATA statements. The computer then informs you that it
is out of data, printing on the paper in your teletypewriter “OUT OF DATA IN 30” and stops.

For a moment, let us look at the importance of the various statements. For example, what would
have happened if we had omitted line number 55? The answer is simple: the computer would
have solved the three systems and then told us when it was out of data. However, since it was
not asked to tell us (PRINT) its answers, it would not do it, and the solutions would be the
computer’s secret. What would have happened if we had left out line 20? In this problem just
solved, nothing would have happened. But, if G were equal to zero, we would have set the computer
the impossible task of dividing by zero in 37 and 42, and it would tell us so emphatically, printing
“DIVISION BY ZERO IN 37” and “DIVISION BY ZERO IN 42.” Had we left out statement 60, the
computer would have solved the first system, printed out the values of X and Y, and then gone on
to line 65 where it would be directed to print ¥“NO UNIQUE SOLUTION”. It would do this and
then stop.

One very natural question arises from the seemingly arbitrary numbering of the statements:
why this selection of line numbers? The answer is that the particular choice of line numbers
is arbitrary, as long as the statements are numbered in the order which we want the machine to
follow in executing the program. We could have numbered the statements 1, 2, 3, . .., 13,
although we do not recommend this numbering. We would normally number the statements
10, 20, 30, . .., 130. We put the numbers such a distance apart so that we can later insert
additional statements if we find that we have forgotten them in writing the program originally.
Thus, if we find that we have left out two statements between those numbered 40 and 50, we can
give them any two numbers between 40 and 50--say 44 and 46; and in the editing and sorting
process, the computer will put them in their proper place.

Another question arises from the seemingly arbitrary placing of the elements of data in the
DATA statements: why place them as they have been in the sample program? Here again, the
choice is arbitrary and we need only put the numbers in the order that we want them read (the

TIME-SHARING SERVICE BASIC

LANGUAGE

first for A, the second for B, the third for D, the fourth for E, the fifth for C, the sixth for F,
the seventh for the next C, etc.). In place of the three statements numbered 70, 80, and 85, we
could have put

75 DATA1, 2,4,2,-17,5,1, 3,4, -1
or we could have written, perhaps more naturally,

70 DATA 1, 2, 4, 2
75 DATA -1, 5
80 DATA 1, 3
85 DATA 4, -7

to indicate that the coefficients appear in the first data statement and the various pairs of right-
hand constants appear in the subsequent statements.

The program and the resulting run is shown below exactly as it appears on the teletypewriter:

10 READ A, B, D, E

15 LET G = A * E - B % D
20 IF G = 0 THEN 65

30 READ C, F
37 LET X = ¢ C
42 LET Y = ¢ A
55 PRINT X, Y
60 GO TO 30

65 PRINT = NO UNIQUE SOLUTION™
70 DATA t, 2, 4

80 DATA 2, -7, 5

85 DATA 1, 3, 4, -7

*x E-BxF) /G
* F-Cx*xD) /@G

S0 END
RUN
LINEAR 10:37
4 -5.5
.8666617 . 166667
=3,66667 3.,83333

OUT OF DATA IN 30

TIME: 0 SECS,.

After typing the program, we type RUN followed by a carriage return. Up to this point the
computer stores the program and does nothing with it. It is this command which directs the
computer to execute your program.

Note that the computer, before printing out the answers, printed the name which we gave to the
problem (LINEAR) and the time and date of the computation. At the end of the printed answers
the machine tells us, to the nearest second, the amount of computing time used in our problem.
Since it took (considerably) less than one-half of a second for the computer to solve the three
systems, the time is recorded as 0,seconds.

TIME-SHARING SERVICE BASIC

LANGUAGE

2.2 FORMULAS

The computer can perform a great many operations--it can add, subtract, multiply, divide, extract
square roots, raise a number to a power, and find the sine of a number (on an angle measured in
radians), etc.--and we shallnow learnhow to tell the computer to perform these various operations
and to perform them in the order that we want them done.

The computer performs its primary function (that of computation) by evaluating formulas which
are supplied in a program. These formulas are very similar to those used in standard mathe-
matical calculation, with the exception that all BASIC formulas must be written on a single line.
Five arithmetic operations can be used to write a formula, and these are listed in the following
table:

Symbol Example Meaning
+ A+B Addition (add B to A)
- A-B Subtraction (subtract B from A}
* A*B Multiplication (multiply B by A)
/ A/ B Division (divide A by B),
t Xt 2 Raise to the power (find X?)

We must be careful with parentheses to make sure that we group together those things which we
want together. We must also understand the order in which the computer does its work. For
example, if we type A + B * C t D, the computer will first raise C to the power D, multiply this
result by B, and then add A to the resulting product. This is the same convention as is usual for
A + B CDP. If this is not the order intended, then we must use parentheses to indicate a different
order. For example, if it is the product of B and C that we want raised to the power D, we must
write A + (B * C) t D; or, if we want to multiply A + B by C to the power D, we write
(A + B) * CtD. We could even add A to B, multiply their sum by C, and raise the product to the
power D by writing ((A+B) *C)1D. The order of priorities is summarized in the following rules:

1. The formula inside parentheses is computed before the parenthesized quantity is used in
further computations.

2. In the absence of parentheses in a formula involving addition, multiplication, and the
raising of a number to a power, the computer first raises the number to the power, then
performs the multiplication, and the addition comes last. Division has the same priority
as multiplication, and subtraction the same as addition.

3. In the absence of parentheses in a formula involving only multiplication and division, the
operations are performed from left to right, even as they are read. So also does the
computer perform addition and subtraction from left to right.

These rules are illustrated in the previous example. The rules also tell us that the computer,
faced with A - B - C, will (as usual) subtract B from A and then C from their difference; faced
with A/B/C, it will divide A by B and that quotient by C. Given A tB1C, the computer will raise
the number A to the power B and take the resulting number and raise it to the power C. If there
is any question in your mind about the priority, put in more parentheses to eliminate possible
ambiguities.

TIME-SHARING SERVICE BASIC

LANGUAGE

-

In addition to these five arithmetic operations, the computer can evaluate several mathematical
functions. These functions are given special 3-letter English names, as the following list shows:

Functions Interpretation

SIN (X) Find the sine of X

COS (X) Finhd the cosine of X X interpreted as
a number, or as

TAN (X) Find the tangent of X an angle measured
in radians

ATN (X) Find the arctangent of X

EXP (X) Find e X

LOG (X) Find the natural logarithm of X (In X)

ABS (X) Find the absolute value of X ([X|)

SQR (X) Find the square root of X (vX)

Two other mathematical functions are also available in BASIC: INT and RND; these are reserved
for explanation in Chapter 3. In place of X, we may substitute any formula or any number in
parentheses following any of these formulas. For example, we may ask the computer
to find A& + X° by writing SQR (4 + X13), or the arctangent of 3X - 2e X + 8 by writing
ATN (3 * X -2 * EXP (X) + 8).

If, sitting at the teletypewriter, you need the value of (%—)1" , you can write the two-line program.

10 PRINT (5/6)t 17
20 END

and the computer will find the decimal form of this number and print it out in less time than it
took you to type the program.

Since we have mentioned numbers and variables, we should be sure that we understand how to
write numbers for the computer and what variables are allowed.

2.2.1 Numbers

A number may be positive or negative and it may contain up to nine digits, but it must be expressed
in decimal form. For example, all of the following are numbers in BASIC: 2, -3.675, 123456789,
-.987654321, and 483.4156. The followingare notnumbers in BASIC: 14/3, ./7, and .00123456789,
The first two are formulas, but not numbers, and the last one has more than nine digits. We may
ask the computer to find the decimal expansion of 14/3 or /%, and to do something with the
resulting number, but we may not include either in a list of DATA. We gain further flexibility
by wuse of the letter E, which stands for “times ten to the power.” Thus, we may write
.00123456789 in a form acceptable to the computer in any of several forms: .123456789E-2 or
123456789E-11 or 1234.56789E-6. We may write ten million as 1E7 and 1965 as 1.965E3. We do
not write EY as a number, but must write 1E7 to indicate that it is 1 that is multiplied by 107 .

TIME-SHARING SERVICE BASIC

LANGUAGE

2.2.2 Variables

A variable in BASIC is denoted by any letter, or by any letter followed by a single digit. Thus,
the computer will interpret E7 as a variable, along with A, X, N5, I0, and O1. A variable in
BASIC stands for a number, usually one that is not known to the programmer at the time the
program was written, Variables are given or assigned values by LET, READ, or INPUT statements.
The value so assigned will not change until the next time a LET, READ, or INPUT statement is
encountered with a value for that variable,

Although the computer does little in the way of “correcting,” during computation, it will sometimes
help you when you forget to indicate absolute value. For example, if you ask for the square root
of -7 or the logarithm of -5, the computer will give you the square root of 7 with the error
message that you have asked for the square root of a negative number, or the logarithm of 5 with
the error message that you have asked for the logarithm of a negative number.

Six other mathematical symbols are provided for in BASIC, symbols of relation, and these are
used in [F-THEN statements where it is necessary to compare values. An example of the use of
these relation symbols was given in the sample program in section 1. Any of the following six
standard relations may be used:

Symbol Example Meaning
= A=B Is equal to (A is equal to B)
< A< B Is less than (A is less than B)
<= A <=B Is less than or equal to

(A is less than or equal to B}
> A>B Is greater than (A is greater than B)

>= A>=B Is greater than or equal to
(A is greater than or equal to B)

< A<> B Is not equal to (A is not equal to B}

2.3 LOOPS

We are frequently interested in writing a program in which one or more portions are performed
not just once but a number of times, perhaps with slight changes each time. In order to write
the simplest program, the one in which this portion to be repeated is written just once, we use
the programming device known as a loop.

The programs which use loops can, perhaps, be best illustrated and explained by two programs
for the simple task of printing out a table of the first 100 positive integers together with the
square root of each. Without a loop, our program would be 101 lines long and read:

10 PRINT 1, SQR (1)
20 PRINT 2, SQR (2)
30 PRINT 3, SQR (3)

990 PRINT 99, SQR (99)
1000 PRINT 100, SQR (100)
1010 END

BASIC

TIME-SHARING SERVICE LANGUAGE

With the following program, using one type of loop, we can obtain the same table with far fewer
lines of instruction, 5 instead of 101:

10 LETX =1

20 PRINT X, SQR (X)

30 LETX=X+1

40 1IF X <= 100 THEN 20
50 END

Statement 10 gives the value of 1 to X and “jnitializes” the loop. In the line 20 is printed both 1
and its square root. Then, in line 30, X is increased by 1, to 2. Line 40 asks whether X is less
than or equal to 100; an affirmative answer directs the computer back to line 20. Here it prints
2 and /2, and goes to 30. Again X is increased by 1, this time to 3, and at 40 it goes back to
20. This process is repeated--line 20 (print 3 and /3), line 30 (X = 4), line 40 (since 4<100 go
back to line 20), etc.-- until the loop has been traversed 100 times. Then, after it has printed
100 and its square root has been printed, X becomes 101. The computer now receives a negative
answer to the question in line 40 (X is greater than 100, not less than or equal to it), does not
return to 20 but moves on to line 50, and ends the program. All loops contain four characteristics:
initialization (line 10), the body (line 20), modification (line 30), and an exit test (line 40).

Because loops are so important and because loops of the type just illustrated arise so often,
BASIC provides two statements to specify a loop even more simply. They are the FOR and NEXT
statements and their use is illustrated in the program:

10 FOR X =1 TO 100
20 PRINT X, SQR (X)
30 NEXT X

50 END

In line 10, X is set equal to 1, and a test is set up, like that of line 40 above. Line 30 carries out
two tasks: X is increased by 1, and the test is carried out to determine whether to go back to
20 or go on. Thus lines 10 and 30 take the place of lines 10, 30, and 40 in the previous program--
and they are easier to use.

k]
Note that the value of X is increased by 1 each time we go through the loop. If we wanted a
different increase, we could specify it by writing

10 FOR X =1 TO 100 STEP 5

and the computer would assign 1 to X on the first time through the loop, 6 to X on the second
time through, 11 on the third time, and 96 on the last time. Another step of 5 would take X
beyond 100, so the program would proceed to the end after printing 96 and its square root. The
STEP may be positive or negative, and we could have obtained the first table, printed in reverse
order, by writing line 10 as

10 FOR X =100 TO 1 STEP -1
In the absence of a STEP instruction, a step size of +1 is assumed.
More complicated FOR statements are allowed. The initial value, the final value, and the step
size may all be formulas of any complexity. For example, if N and Z have been specified earlier
in the program, we could write

FOR X = N + 7*Z TO (Z-N) /3 STEP (N-4*Z)/10

TIME-SHARING SERVICE BASIC

LANGUAGE

